26. Rubidium-Pentafluoromanganat (III) und dessen Monohydrat, strukturelle Daten und Topotaxiebeziehungen

von John Ralph Günter, Jean-Pierre Matthieu und Hans Rudolf Oswald

Anorganisch-chemisches Institut der Universität Zürich, Rämistrasse 76, CH-8001 Zürich

Im ehrenden Andenken an Professor Dr. Heinrich Labhart

(14.XI.77)

Rubidiumpentafluoromanganate(III) and its monohydrate, crystal data and topotaxy

Summary

The unit cells and most probable space groups of the new compounds $Rb_2MnF_5 \cdot H_2O$ and Rb_2MnF_5 have been determined from single crystal X-ray diffraction data and the powder diffraction patterns indexed.

Rb₂MnF₅ · H₂O: orthorhombic, a = 9.407 (2) Å, b = 8.202 (2) Å, c = 8.344 (2) Å, D¹⁷_{2 h} - Cmcm;

Rb₂MnF₅: tetragonal, a = 6.103(1) Å, c = 4.140(1) Å, $C_{4h}^{1} - P4/m \text{ or } D_{4h}^{1} - P4/mmm.$

By analogy to the stoichiometrically similar phases high temperature $K_2MnF_5 \cdot H_2O$, the unit cell of which has also been determined and its powder diffraction pattern indexed, and $(NH_4)_2MnF_5$, model structures for the rubidium salts are proposed. Both structures consist of infinite chains of corner sharing coordination octahedra [MnF₆], between which the rubidium ions and in the case of the hydrate additional water molecules are located. X-ray diffraction and scanning electron microscopical investigations of the dehydration of the hydrate clearly point to a chain controlled topotactic reaction mechanism. This supports the proposed model structures and confirms the possibility of predicting topotactic reaction mechanisms.

1. Einleitung. – Im Rahmen von Untersuchungen an Verbindungen mit Jahn-Teller-verzerrten Koordinationspolyedern interessierten wir uns für die bisher nicht beschriebene Phase Rb_2MnF_5 und deren ebenfalls unbekanntes Monohydrat [1]. Die Struktur dieser zwei Verbindungen kann durch Vergleich mit stöchiometrisch analog zusammengesetzten Komplexsalzen in ihren Grundzügen abgeleitet werden. Da solche Strukturvergleiche für beide Phasen auf Kettenstrukturen mit eckenverknüpften Koordinationsoktaedern [MnF₆] führen, liegt die Vermutung nahe, dass bei der thermischen Zersetzung des Monohydrats diese Ketten als strukturerhaltende Bauelemente weitgehend unverändert in die Produktstruktur übergehen. Reaktionen von festen Stoffen, die aufgrund der Erhaltung bestimmter Bauelemente kristallographisch orientierte Produkte liefern, werden als topotaktische Umsetzungen bezeichnet, für die wir kürzlich eine Systematik vorgeschlagen haben [2].

Zur Stützung der nur aus Strukturvergleichen abgeleiteten Modelle des kristallographischen Aufbaus von Rb_2MnF_5 und dessen Monohydrat sowie zur Überprüfung der Möglichkeit, topotaktische Reaktionsabläufe vorherzusagen, sind deshalb die strukturellen Zusammenhänge zwischen diesen beiden Phasen eingehender untersucht worden.

2. Herstellung. – 2,68 g Mn(III)-acetat-dihydrat werden in einem Polyäthylengefäss in 200 ml 2N HF gelöst und anschliessend 9,24 g Rb_2CO_3 in kleinen Portionen unter stetigem Rühren eingetragen. Die erste Menge des Produkts kristallisiert bei Raumtemperatur aus, und weitere Mengen können nach langsamem Abkühlen auf 0° innert Tagen erhalten werden. Die Isolierung erfolgt durch Dekantieren und Waschen der Kristalle mit Äthanol. Dunkle rotbraune Nadeln (bis 3 mm) oder Plättchen (0,1 mm). Die iodometrische Titration ergibt: 16,5% Mn(III); Ber. für Rb₂MnF₅ · H₂O: 16,2%.

3. Ergebnisse. - 3.1. Thermische Analyse. Thermogravimetrie: Mettler Thermoanalyzer TA-1, Einwaage 15,2 mg, Aufheizgeschwindigkeit 2°/Min, in strömender Luft. Differential-Scanning-Calorimetrie: Perkin-Elmer DSC-2, Einwaagen 5-7 mg, Aufheizgeschwindigkeit 5°/Min., in strömendem N_2 .

Die Entwässerung erfolgt in einer einzigen Stufe, welche einem Gewichtsverlust von 1 mol Wasser pro mol $Rb_2MnF_5 \cdot H_2O$ entspricht. Die Zersetzung läuft oberhalb 98° ab. Als Reaktionsenthalpie wird ein Wert von $\Delta H = 46,1$ cal/g oder 15,6 kcal/mol ermittelt. Das in Form von Pseudomorphosen vorliegende Entwässerungsprodukt, Rb_2MnF_5 , ist stark hygroskopisch.

3.2. Kristallstruktur von $Rb_2MnF_5 \cdot H_2O$. Röntgen-Pulverdiagramme werden auf einer fokussierenden Guinier-IV Kamera der Fa. Nonius (Delft) mit CuKa₁-Strahlung mit reinstem KCl als interne Eichsubstanz registriert. Die Indizierung wird rechnerisch nach der Methode der kleinsten Fehlerquadrate verfeinert und die Reflexintensitäten durch Photometrieren der Filme mit einem Joyce-Loebl-Doppelstrahl-Mikrodensitometer ermittelt. Zur Bestimmung der Elementarzellen und Raumgruppen dienen Drehkristall-, Weissenberg- und Präzessions-Aufnahmen mit CuKa-und MoKa-Strahlung.

Für $Rb_2MnF_5 \cdot H_2O$ resultiert eine orthorhombische Elementarzelle mit den Achsen a = 9,39 Å, b = 8,20 Å, c = 8,35 Å.

Folgende systematische Auslöschungen werden beobachtet:

hkl nur mit h+k=2n und h01 nur mit l=2n. Damit kommen als Raumgruppen in Frage:

Nr. 36, $C_{2v}^{12} - Cmc_{1}^{2}$; Nr. 40, $C_{2v}^{16} - C2cm$ und Nr. 63, $D_{2h}^{17} - Cmcm$.

Das Fehlen eines piezoelektrischen Effekts, gemessen nach Giebe & Scheibe, lässt die zentrosymmetrische Raumgruppe Nr. 63 am wahrscheinlichsten erscheinen.

Mit Hilfe dieser Elementarzelle lässt sich das Röntgen-Pulverdiagramm vollständig indizieren. Die rechnerische Verfeinerung der Gitterkonstanten führt auf folgende Werte: a=9,407(2) Å, b=8,202(2) Å, c=8,344(2) Å. Mit der pyknometrisch bestimmten Dichte von 3,50 g/cm³ berechnet sich der Zellinhalt Z zu 4 Formeleinheiten pro Elementarzelle. Die röntgenographisch bestimmte Dichte beträgt 3,496 g/cm³. Die Bauprinzipien der Kristallstruktur von $Rb_2MnF_5 \cdot H_2O$ lassen sich durch Vergleich mit der stöchiometrisch analog zusammengesetzten Verbindung $K_2MnF_5 \cdot H_2O$ ableiten. Diese ist bei Raumtemperatur monoklin; ihre Struktur wurde von *Edwards* [3] bestimmt. Bei 81° geht sie in einem Phasenübergang zweiter Ordnung in eine orthorhombische Form über [1]. Letztere erscheint aufgrund des Röntgen-Pulverdiagramms mit der hier diskutierten Rubidiumverbindung isotyp. Die Natur des Phasenübergangs und die Ähnlichkeit der Röntgen-Pulverdiagramme auch von Tief- und Hochtemperatur- $K_2MnF_5 \cdot H_2O$ lassen den Schluss zu, dass alle drei Phasen den gleichen kristallographischen Bauprinzipien folgen. In *Tabelle 1* sind die Elementarzellen und in *Tabelle 2* die indizierten Röntgen-Pulverdiagramme von Tieftemperatur- $K_2MnF_5 \cdot H_2O$, Hochtemperatur- $K_2MnF_5 \cdot H_2O$ und $Rb_2MnF_5 \cdot H_2O$ einander gegenübergestellt.

$\overline{Tief - K_2 MnF_5 \cdot H_2 O [3]}$	Hoch - $K_2MnF_5 \cdot H_2O$	$Rb_2MnF_5 \cdot H_2O$
monoklin	orthorhombisch	orthorhombisch
$C_{2h}^2 - P_{2l}^2/m$	D_{2h}^{17} – Cmcm	D_{2h}^{17} – Cmcm
a=6,112(1) Å		2
b = 8,210(2) Å	c = 8,217(2) Å	c = 8,344(2) Å
c = 5,994(1) Å		
$\beta = 97,01(2)^{\circ}$		
$2 \times d_{101} = 8,021 \text{ \AA}$	b = 8,002(1) Å	b = 8,202(2) Å
$2 \times d_{10I} = 9,068 \text{ Å}$	a = 9,123(2) Å	a = 9,407(2) Å
≮101/101 = 91,21°	$(\gamma = 90^{\circ})$	$(\gamma = 90^\circ)$
Z=2	Z = 4	Z == 4
$V = 298,5 \text{ Å}^3$	$V = 599,9 Å^3$	$V = 643, 8 \text{ Å}^3$
Die Ziffern in Klammern bedeuten	die Standardabweichungen in den letzten a	angegebenen Stellen.

Tabelle 1. Vergleich der Elementarzellen von Tief- und Hochtemperatur – $K_2MnF_5 \cdot H_2O$ und $Rb_2MnF_5 \cdot H_2O$

Nach *Edwards* [3] ist Tieftemperatur $K_2MnF_5 \cdot H_2O$ aus unendlichen Ketten eckenverknüpfter Koordinationsoktaeder [MnF₆] parallel zu [010] aufgebaut, zwischen denen die Alkali-Ionen und Wassermolekeln eingelagert sind. *Figur 1a* zeigt die Struktur von Tieftemperatur- $K_2MnF_5 \cdot H_2O$ projiziert entlang diesen Oktaederketten, *Figur 1b* die damit eng verwandte Struktur von Hochtemperatur- $K_2MnF_5 \cdot H_2O$ und $Rb_2MnF_5 \cdot H_2O$ in der entsprechenden Orientierung,

d.h. projiziert entlang [001].

3.3. Kristallstruktur von Rb_2MnF_5 . Für das wasserfreie Rb_2MnF_5 werden aus Einkristall-Röntgendiagrammen folgende Daten ermittelt: tetragonale Symmetrie, a=6,08 Å, c=4,11 Å. Systematische Auslöschungen werden nicht beobachtet. Von den demnach in Frage kommenden acht Raumgruppen erscheinen die beiden zentrosymmetrischen, Nr. 83, $C_{4h}^1 - P4/m$ und Nr. 123, $D_{4h}^1 - P4/mmm$ am wahrscheinlichsten. Ein Vergleich des Zellvolumens mit demjenigen des Hydrats führt auf einen Zellinhalt von 1 Formeleinheit pro Elementarzelle. Wegen des stark hygroskopischen Charakters der wasserfreien Verbindung kann die experimentelle Dichte nicht mit genügender Genauigkeit bestimmt werden.

Tief-K ₂ MnF ₅ · H ₂ O			$Hoch-K_2MnF_5 \cdot H_2O$			Rb ₂ MnF	$Rb_2MnF_5 \cdot H_2O$				
^d Abeob.	d ber.	I/I ₀	hkl	d beob.	d ber.	I/I ₀	hkl	d beob.	dber.	1/I ₀	hkl
6,062 5 952	6,066 5 948	91 78	100	6,021	6,015	94	110	6,188	6,182	64	110
4,805 4,525	4,818 4,532	8	011 101	4,857 4,560	4,854 4,562	6 6	111 200	4,965 4,697 4,168	4,968 4,704 4,172	13 6 17	111 200 002
3,601	3,603	16	111	3,601	3,597	9	021	4,101 3,675	4,101 3,680	10 8	020 021
3,398 3,373	3,400 3,378	93 77	120 021	3,395	3,393	100	112	3,457	3,458	51	112
3,037	3,033 3,043	93	12] 200	3,053	3,053	59	202	3,118	3,121	68	202
2,976	2,974	19	002	3,008	3,008	26 42	220	3,092	3,091	68 59	220
2,804	2,809	23	201	2,804	2,800	42 20	310	2,724	2,723	59	022
2,812	2,810	23 16	210 210	2,824	2,824	19	221	2,896	2,899	25	221
2,794 2,688 2,650	2,796 2,689 2,658	10 9 21	211	2,688	2,687	21	311	2,765	2,763	30	311
2,639	2,638	25	201	2,559	2,560	20	130	2,623	2,625	9	130
2,547 2,493	2,550	8	102					2,534	2,536	5	113
2,440 2,409 2,339	2,440 2,409 2,339	43 50 2	220 022 221	2,426	2,427	45	222	2,483	2,484	81	222
2,319 2,268	2,318 2,266	7 43	122 202	2,279	2,281	26	400	2,351 2,302	2,352 2,302	24 4	400 023
2,184 2,184	2,183 2,185	10 10	221 212	2,172	2,173	4	132				
2,052 2,034 2,004	2,053 2,032 2,005	100 13 25	040 230 202	2,054 2,026 2,000	2,054 2,025 2,001	60 6 20	004 223 040	2,085 2,067 2,049	2,086 2,068 2,050	100 12 18	004 223 040
1,9742 1,9612	1,9725 1,9604	6 5	23] 132	1,9733	1,9725	7	313	2,016	2,017	15	313
1,9454 1,9406	1,9442 1,9402	56 26	140 041	1,9434 1,9434	1,9438) 1,9442)	27	041 114	2,000 1,9897 1,9774	2,001 1,9912 1,9766	9 13 12	331 041 114
1,8024 1,8024	1,8020 1,8014	8	311 222					1,8329 1,8329	1,8327) 1,8338)	14	422 510
1,7859 1,7650 1,7369	1,7856 1,7663 1,7360	3	023 123 317					1,7908	1,7910	3	511
1,6995 1.6894	1,6998 1,6894	8	240 042	1,6966	1,6963	8	224	1,7293	1,7291	19	224
1,6837 1,6639 1,6639	1,6842 1,6639 1,6648	1 4	321 123 241	1,6737	1,6732	3	242	1,7143	1,7137	10	242

Tabelle 2. Vergleich der Röntgenpulverdiagramme von Tief- und Hochtemperatur $K_2MnF_5 \cdot H_2O$ und $Rb_2MnF_5 \cdot H_2O$

Oktaeder: $[MnF_6]$ O: K \bullet : H₂O

Fig. 1a. Kristallstruktur von Tieftemperatur- $K_2MnF_5 \cdot H_2O$ nach Edwards [3], projiziert entlang [010]

Fig. 1b. Kristallstruktur von Hochtemperatur- $K_2MnF_5 \cdot H_2O$ und von $Rb_2MnF_5 \cdot H_2O$, projiziert entlang [001] (schematisch)

Die rechnerisch verfeinerte Indizierung des Röntgen-Pulverdiagramms (Tab. 3) führt auf folgende Gitterkonstanten:

a = 6,103(1) Å, c = 4,140(1) Å

Auch zum wasserfreien Rb_2MnF_5 existiert eine stöchiometrisch analoge Verbindung mit ähnlichen Gitterdimensionen, aus deren Struktur die grundlegenden Bauprinzipien des Rubidiumsalzes abgeleitet werden können: $(NH_4)_2MnF_5$ [4]. Die kristallographischen Daten der beiden Verbindungen sind in Tabelle 4 gegenübergestellt. Die Unterschiede in den Gitterdimensionen lassen sich durch die Unterschiede der Ionenradien von NH_4^+ und Rb^+ zwanglos erklären. $(NH_4)_2MnF_5$ ist wie $K_2MnF_5 \cdot H_2O$ aus unendlichen Ketten eckenverknüpfter Oktaeder [MnF₆] parallel [010] aufgebaut, zwischen denen Kationen eingelagert sind. *Figur 2* gibt die entsprechenden Projektionen der Kristallstrukturen von $(NH_4)_2MnF_5$ [4] und in Analogie dazu von Rb_2MnF_5 wieder.

3.4. Topotaxie der Entwässerungsreaktion. Die oben abgeleiteten Strukturvorschläge für $Rb_2MnF_5 \cdot H_2O$ (Fig. 1b) und Rb_2MnF_5 (Fig. 2b) sind sich in bezug

d beob.	d ber.	I/I ₀	hkl	d beob.	d ber.	I/I ₀	hkl
6,103	6,103	49	100	2.070	2.070	75	002
4,318	4,316	17	110	1,9602	1,9602	25	102
4,139	4,140	13	001	1,9297	1,9301	6	310
3,424	3,423	20	101	1,8663	1,8663	2	112
3,051	3,052	26	200	1,7508	1,7493	21	311
2,986	2,988	100	111	1,7128	1,7131	15	202
2,728	2,730	4	210	1,6488	1,6494	3	122
2,456	2,456	58	201	1,5255	1,5258	5	400
2,207	2,208	16	220	1,4944	1,4938	6	222

Tabelle 3. Röntgenpulverdiagramm von Rb2MnF5

$(NH_4)_2 MnF_5$ [4]	Rb_2MnF_5
orthorhombisch $D_{2h}^{16} - Pnma$ a = 6,20 Å b = 7,94 Å	tetragonal $C_{4h}^{l} - P4/m$ oder $D_{4h}^{l} - P4/mmm$ $c = 4,140(1)$ Å $(=\frac{8,280}{4}$ Å)
c = 10,72 Å $d_{101} = d_{101} = 5,37 \text{ Å}$ $\times 101/101 = 60^{\circ}$ Z = 4 $V = 527,7 \text{ Å}^{3}$	a = 6,103(1) Å ($\gamma = 90^{\circ}$) Z = 1 $V = 154,2 \text{ Å}^3$

Tabelle 4. Vergleich der Elementarzellen von (NH4)2MnF5 und Rb2MnF5

Oktaeder : [MnF₆] ○ : NH₂ in 3/4 ○ : NH₂ in 1/4

Fig. 2a. Kristallstruktur von $(NH_4)_2MnF_5$ nach Sears & Hoard [4], projiziert entlang [010]

Fig. 2b. Kristallstruktur von Rb₂MnF₅, projiziert entlang [001] (schematisch)

auf ihr wichtigstes Baumotiv sehr ähnlich. Beide Strukturen bestehen aus Ketten eckenverknüpfter Koordinationsoktaeder [MnF₆], zwischen die Rubidiumionen und beim Hydrat zusätzlich Wassermolekeln eingelagert sind. Auch die Dimensionen der einzelnen Oktaeder sind in beiden Fällen annähernd gleich: Periodizität in Kettenrichtung in $Rb_2MnF_5 \cdot H_2O = 8,34/2$ Å = 4,17 Å, in $Rb_2MnF_5 = 4,14$ Å.

Zahlreiche eingehend untersuchte Reaktionen, in denen Produkt und Reaktand ähnliche Strukturelemente (Schichten oder Ketten) aufweisen, verlaufen topotaktisch [2]. Es lässt sich daher vermuten, dass auch bei der hier untersuchten Entwässerung die Oktaederketten bis auf eine geringe Kontraktion von ca. 0,7%unverändert erhalten bleiben und das Gitter nur insofern modifiziert wird, als die Wassermolekeln austreten.

Zur Überprüfung dieser Vermutung wird experimentell so vorgegangen, dass ein Einkristall des Hydrats in einer oben offenen *Lindemann*-Glaskapillare röntgenographisch orientiert und anschliessend während 2 Std. bei 140° entwässert wird. Bei dieser Temperatur wird die Kapillare zugeschmolzen und der Kristall auf der *Weissenberg*-Kamera mit unveränderter Einstellung erneut röntgenographisch untersucht. Durch direkten Vergleich der Aufnahmen von Hydrat und wasserfreier Verbindung lassen sich die gegenseitigen Orientierungsbeziehungen bestimmen.

Der Ausgangskristall wird so orientiert, dass die Richtung der Oktaederketten im Hydrat in der Goniometerachse liegt. Drehkristallaufnahmen bestätigen, dass dies dann auch für das entwässerte Produkt zutrifft:

[001]_{Hydrat} || [001]_{Dehydrat}

Die Röntgenreflexe der entwässerten Kristalle auf den Weissenberg-Aufnahmen der Zone hk0 sind leicht verbreitert. Sie weisen auf eine Orientierungsbeziehung zwischen Reaktand und Produkt hin, welche zwischen den beiden folgenden Grenzlagen liegt:

[110]_{Hvdrat} || [100]_{Dehydrat}

und

$$[1\overline{10}]_{Hydrat} \parallel [100]_{Dehydrat}$$
 (2).

(1)

(3).

Dies entspricht für die Reflexschwerpunkte einer mittleren Orientierung mit

[010]_{Hydrat} || [110]_{Dehydrat}

und

Diese Beziehungen (1) bis (3) sind in *Figur 3* dargestellt. Durch Vergleich mit den *Figuren 1b* und 2b ist ersichtlich, dass die Oktaederketten ihre Lage nur geringfügig verändert haben. Die leichte Drehung um ihre Achse und das Auftreten einer höheren Symmetrie im Produkt ist durch das Wegfallen der Wasserstoffbrücken bei der Entwässerung zu erklären. Die Periodizität innerhalb der Ketten wird nur um 0,7% verkürzt, dagegen ändert sich der Abstand der benachbarten Ketten stärker. Er nimmt von 6,24 Å in Rb₂MnF₅ · H₂O ([101]-Richtung) auf 6,10 Å in Rb₂MnF₅ ([100]-Richtung) um 2,2% ab.

3.5. Rehydratation. Da die entwässerten Kristalle sehr hygroskopisch sind, lässt sich der entwässerte, noch orientierte Kristall durch Öffnen des oberen Kapillarenendes spontan, aber nur teilweise rehydratisieren und anschliessend erneut röntgenographisch untersuchen. Aus den so erhaltenen *Weissenberg*-Aufnahmen geht hervor, dass die Entwässerung auch strukturell reversibel ist. Es gelten die gleichen Topotaxiebeziehungen wie sie in Abschnitt 3.4 beschrieben wurden. Da aber die Rückreaktion unter Symmetrieerniedrigung von tetragonal zu orthorhombisch erfolgt, tritt eine enge Verzwillingung des Hydrats ein. Diese beruht auf der kristallographischen Gleichwertigkeit der beiden Topotaxiebeziehungen

 $[010]_{Hydrat} \parallel [110]_{Dehydrat}$ und $[100]_{Hydrat} \parallel [1\overline{10}]_{Dehydrat}$ (3) einerseits und

 $[100]_{Hydrat} \parallel [110]_{Dehydrat}$ und $[010]_{Hydrat} \parallel [1\overline{10}]_{Dehydrat}$ (4) and ererse its (Figur 4).

Fig. 3. Relative Orientierungen von tetragonalem Rb_2MnF_5 (Dehydrat) zu orthorhombischem $Rb_2MnF_5 \cdot H_2O$ (Hydrat) bei der Entwässerung. Grenzlagen (1) und (2), mittlere Lage (3) (vgl. Text Abschnitt 3.4)

Fig. 4. Relative Orientierungen von orthorhombischem Rb₂MnF₅ · H₂O (Hydrat) zu tetragonalem Rb₂MnF₅ (Dehydrat) bei der Rehydratisierung (vgl. Text Abschnitt 3.5)

Bei der unter Symmetrieerhöhung ablaufenden Entwässerung führen beide Beziehungen zu kristallographisch identischen Produktorientierungen.

3.6. Morphologie. Kristalle des Monohydrats und Pseudomorphosen des wasserfreien Abbauprodukts werden nach Bedampfung mit einem dünnen Goldfilm zur Erhöhung der elektrischen Oberflächen-Leitfähigkeit in einem Rasterelektronenmikroskop Stereoscan S4 photographiert.

Da die Ketten eckenverknüpfter Koordinationsoktaeder als Baueinheiten von Produkt und Reaktand während der Entwässerung erhalten bleiben, muss das entweichende Wasser die Kristalle über Diffusionswege parallel zu diesen Ketten verlassen. Es ist daher zu erwarten, dass die entwässerten Kristalle Spalten parallel zur Kettenrichtung, d.h. zu ihrer längsten Ausdehnung aufweisen.

Durch die bei der Entwässerung auftretende Kontraktion der Ketten um ca. 0,7% entstehen zudem mechanische Spannungen, die gelegentlich zum Reissen der Ketten führen und sich auch makroskopisch im Auftreten von Spalten senkrecht zur Kettenrichtung äussern müssen.

Figur 5a zeigt eine rasterelektronenmikroskopische Aufnahme von einem unzersetzten $Rb_2MnF_5 \cdot H_2O$ -Kristall mit glatten, intakten Oberflächen, Figur 5b die eines entwässerten Kristalls, der die beiden aus dem topotaktischen Reaktionsverlauf erwarteten, aufeinander senkrecht stehenden Arten von Rissen in den Kristallflächen deutlich aufweist.

Somit stützen auch die morphologischen Daten den röntgenographisch ermittelten Reaktionsmechanismus.

Fig. 5a. Rasterelektronenmikroskopische Aufnahme eines unzersetzten $Rb_2MnF_5 \cdot H_2O$ -Kristalls

Fig. 5b. Rasterelektronenmikroskopische Aufnahme eines zu Rb₂MnF₅ entwässerten Kristalls mit Spalten parallel und quer zur Nadelrichtung

Die Autoren danken dem Schweizerischen Nationalfonds zur Förderung der wissenschaftlichen Forschung für finanzielle Unterstützung.

LITERATURVERZEICHNIS

- [1] J.-P. Matthieu, Dissertation, Universität Zürich 1977.
- [2] J. R. Günter & H. R. Oswald, Bull. Inst. chem. Res. Kyoto Univ. 53, 249 (1975).
- [3] A. J. Edwards, J. chem. Soc. A 1971, 2653.
- [4] D. R. Sears & J. L. Hoard, J. chem. Physics 50, 1066 (1969).